VSEPR Theory and Molecular Geometry
Valence‑Shell Electron‑Pair Repulsion (**VSEPR**) theory predicts the three‑dimensional shapes of molecules by treating regions of electron density—single bonds, multiple bonds, lone pairs, and single unpaired electrons—as point charges that repel one another. By counting these domains and applying simple rules, you can assign a geometry to virtually any main‑group molecule or polyatomic ion.
---
1. Electron‑Domain Counting and AXE Notation
1. Draw a valid Lewis structure (complete octets, reasonable formal charges).
2. Count electron domains around the central atom.
3. Assign the steric number (SN) = σ bonds + lone pairs.
4. Match SN to an electron‑domain (ED) geometry.
5. Remove lone‑pair “phantoms” to get the observable molecular shape; adjust ideal angles for lone‑pair or multiple‑bond repulsion.
Chemists summarise shapes with AXE:
symbol | meaning | image example |
---|---|---|
A | central atom | |
X | surrounding atoms (bonding pairs) | |
E | lone‑pair domains on A |
The steric number is X + E.
2. Electron‑Domain Geometries (no lone pairs)
SN | AXE | electron‑domain geometry | ideal angle | representative example | image |
---|---|---|---|---|---|
2 | AX₂ | Linear | 180° | HC≡CH (terminal C) | ![]() |
3 | AX₃ | Trigonal planar | 120° | CH₂O | ![]() |
4 | AX₄ | Tetrahedral | 109.5° | CH₄ | ![]() |
5 | AX₅ | Trigonal bipyramidal | 90° / 120° | PF₅ | ![]() |
6 | AX₆ | Octahedral | 90° | SF₆ | ![]() |
3. Molecular Shapes with Lone Pairs
SN | AXE | molecular shape | approx. angle | example | Image |
---|---|---|---|---|---|
3 | AX₂E | Bent (V‑shaped) | 118° | SO₂ | ![]() |
4 | AX₃E | Trigonal pyramidal | 107° | NH₃ | ![]() |
4 | AX₂E₂ | Bent | 104.5° | H₂O | ![]() |
5 | AX₄E | Seesaw | 90° / 117° | SF₄ | ![]() |
5 | AX₃E₂ | T‑shaped | 90° | ClF₃ | ![]() |
5 | AX₂E₃ | Linear | 180° | XeF₂ | ![]() |
6 | AX₅E | Square pyramidal | 90° | BrF₅ | ![]() |
6 | AX₄E₂ | Square planar | 90° | XeF₄ | ![]() |
Lone‑pair compression explains why the H–O–H angle in water (104.5°) is smaller than the ideal tetrahedral 109.5°.
4. Worked Examples
Formaldehyde (CH₂O)
Lewis structure: O═C‑H₂
SN = 3 → AX₃ → ED geometry trigonal planar → molecular shape trigonal planar.
Predicted angle ≈ 120°; observed split 121°/118° due to π‑bond localisation.
Ammonia (NH₃)
SN = 4 → AX₃E → ED geometry tetrahedral → trigonal pyramidal shape.
Lone‑pair repulsion lowers H–N–H from 109.5° to ~107°.
Terminal Carbon of Propyne (CH₃–C≡CH)
SN = 2 → AX₂ → linear; H–C–C = 180°.
5. Deviations and Limitations
- Multiple bonds count as one domain but repel slightly more than single bonds → minor angle expansion adjacent to C=C or C≡C.
- Electronegative substituents (e.g., CF₃) draw electron density, contracting nearby bond angles.
- VSEPR is qualitative; hypervalent species and transition‑metal complexes require MO or DFT methods for accurate geometries.
6. Practice Problems
1. Assign the AXE formula, ED geometry, and molecular shape of sulfur dioxide, SO₂.
2. Predict the H–C–C bond angle in allene, H₂C=C=CH₂, and explain.
solutions
1. SO₂: AX₂E → ED geometry trigonal planar → bent (~118°).
2. Central carbon is sp‑hybridised (SN = 2) → linear → 180°.